SN54HC161, SN74HC161 4-BIT SYNCHRONOUS BINARY COUNTERS

SCLS297A - JANUARY 1996 - REVISED MAY 1997

- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Package Options Include Plastic Small-Outline (D) and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The 'HC161 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is, they can be preset to any number between 0 and 9 or 15 . As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.

SN54HC161... FK PACKAGE (TOP VIEW)

NC - No internal connection

The clear function for the 'HC161 is asynchronous. A low level at the clear ($\overline{\mathrm{CLR}}$) input sets all four of the flip-flop outputs low, regardless of the levels of the CLK, load (LOAD), or enable inputs.
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are ENP, ENT, and a ripple-carry output (RCO). Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a high-level pulse while the count is maximum (9 or 15 with Q_{A} high). This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or $\overline{\text { LOAD }}$) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.

The SN54HC161 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74HC161 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

4-BIT SYNCHRONOUS BINARY COUNTERS

SCLS297A - JANUARY 1996 - REVISED MAY 1997
logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the $\mathrm{D}, \mathrm{J}, \mathrm{N}$, and W packages.

SN54HC161, SN74HC161
 4-BIT SYNCHRONOUS BINARY COUNTERS

logic diagram (positive logic)

\dagger For simplicity, routing of complementary signals $\overline{\mathrm{LD}}$ and $\overline{\mathrm{CK}}$ is not shown on this overall logic diagram. The uses of these signals are shown on the logic diagram of the D/T flip-flops.
Pin numbers shown are for the $\mathrm{D}, \mathrm{J}, \mathrm{N}$, and W packages.
logic symbol, each D/T flip-flop

logic diagram, each D/T flip-flop (positive logic)

\dagger The origins of $\overline{\mathrm{LD}}$ and $\overline{\mathrm{CK}}$ are shown in the logic diagram of the overall device.

typical clear, preset, count, and inhibit sequence

The following sequence is illustrated below:

1. Clear outputs to zero (asynchronous)
2. Preset to binary 12
3. Count to $13,14,15,0,1$, and 2
4. Inhibit

absolute maximum ratings over operating free-air temperature range \dagger

Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right.$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$) (see Note 1) $\pm 20 \mathrm{~mA}$

Package thermal impedance, θ_{JA} (see Note 2): D package . 113² C / W N package .. $78^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.
recommended operating conditions

\ddagger If this device is used in the threshold region (from $\mathrm{V}_{\text {IL }} \max =0.5 \mathrm{~V}$ to $\mathrm{V}_{\text {IH }} \mathrm{min}=1.5 \mathrm{~V}$), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_{t}=1000 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

SN54HC161, SN74HC161 4-BIT SYNCHRONOUS BINARY COUNTERS

SCLS297A - JANUARY 1996 - REVISED MAY 1997
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC161		SN74HC161		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	${ }^{\mathrm{l}} \mathrm{OH}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		1.9		V
			4.5 V	4.4	4.499		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9			
		$\mathrm{I} \mathrm{OH}=-4 \mathrm{~mA}$	4.5 V	3.98	4.3		3.7		3.84			
		$\mathrm{I} \mathrm{OH}=-5.2 \mathrm{~mA}$	6 V	5.48	5.8		5.2		5.34			
V_{OL}	$\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{lOL}=20 \mu \mathrm{~A}$	2 V		0.002	0.1		0.1		0.1	V	
			4.5 V		0.001	0.1		0.1		0.1		
			6 V		0.001	0.1		0.1		0.1		
		$\mathrm{l} \mathrm{OL}=4 \mathrm{~mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$\mathrm{l} \mathrm{OL}=5.2 \mathrm{~mA}$	6 V		0.15	0.26		0.4		0.33		
1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or 0		6 V		± 0.1	± 100		± 1000		± 1000	nA	
I_{CC}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0 ,	$\mathrm{l}=0$	6 V			8		160		80	$\mu \mathrm{A}$	
C_{i}			2 V to 6 V		3	10		10		10	pF	

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC161		SN74HC161		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {f clock }}$	Clock frequency		2 V	0	6	0	4.2	0	5	MHz
			4.5 V	0	31	0	21	0	25	
			6 V	0	36	0	25	0	29	
${ }^{\text {w }}$ w	Pulse duration	CLK high or low	2 V	80		120		100		ns
			4.5 V	16		24		20		
			6 V	14		20		17		
			2 V	80		120		100		
		$\overline{\text { CLR }}$ low	4.5 V	16		24		20		
			6 V	14		20		17		
$t_{\text {su }}$	Setup time before CLK \uparrow	A, B, C, or D	2 V	150		225		190		ns
			4.5 V	30		45		38		
			6 V	26		38		32		
			2 V	135		205		170		
		$\overline{\text { LOAD }}$ Iow	4.5 V	27		41		34		
			6 V	23		35		29		
			2 V	170		255		215		
		ENP, ENT	4.5 V	34		51		43		
			6 V	29		43		37		
		$\overline{\mathrm{CLR}}$ inactive	2 V	125		190		155		
			4.5 V	25		38		31		
			6 V	21		32		26		
th	Hold time, all synchronous inputs after CLK \uparrow		2 V	0		0		0		ns
			4.5 V	0		0		0		
			6 V	0		0		0		

SCLS297A - JANUARY 1996 - REVISED MAY 1997
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC161		SN74HC161		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\prime}$ max			2 V	6	14		4.2		5		MHz
			4.5 V	31	40		21		25		
			6 V	36	44		25		29		
${ }^{\text {tpd }}$	CLK	RCO	2 V		83	215		325		270	ns
			4.5 V		24	43		65		54	
			6 V		20	37		55		46	
		Any Q	2 V		80	205		310		255	
			4.5 V		25	41		62		51	
			6 V		21	35		53		43	
	ENT	RCO	2 V		62	195		295		245	
			4.5 V		17	39		59		49	
			6 V		14	33		50		42	
tPHL	$\overline{\text { CLR }}$	Any Q	2 V		105	210		315		265	ns
			4.5 V		21	42		63		53	
			6 V		18	36		54		45	
		RCO	2 V		110	220		330		275	
			4.5 V		22	44		66		55	
			6 V		19	37		56		47	
t_{t}		Any	2 V		38	75		110		95	ns
			4.5 V		8	15		22		19	
			6 V		6	13		19		16	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | TYP | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathrm{pd}} \quad$ Power dissipation capacitance | No load | 60 | pF |

PARAMETER MEASUREMENT INFORMATION

Figure 1. Load Circuit and Voltage Waveforms

APPLICATION INFORMATION

n-bit synchronous counters

This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit counter. The 'HC161 count in binary. Virtually any count mode (modulo-N, N_{1}-to- $\mathrm{N}_{2}, \mathrm{~N}_{1}$-to-maximum) can be used with this fast look-ahead circuit.

The application circuit shown in Figure 2 is not valid for clock frequencies above 18 MHz (at $25^{\circ} \mathrm{C}$ and $\left.4.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}\right)$. The reason for this is that there is a glitch that is produced on the second stage's RCO and every succeeding stage's RCO. This glitch is common to all HC vendors that Texas Instruments has evaluated, in addition to the bipolar equivalents (LS, ALS, AS).

Figure 2

The glitch on RCO is caused because the propagation delay of the rising edge of Q_{A} of the second stage is shorter than the propagation delay of the falling edge of ENT. RCO is the product of ENT, Q_{A}, Q_{B}, Q_{C}, and Q_{D} ($E N T \times Q_{A} \times Q_{B} \times Q_{C} \times Q_{D}$). The resulting glitch is about 7-12 ns in duration. Figure 3 shows the condition in which the glitch occurs. For simplicity, only two stages are being considered, but the results can be applied to other stages. Q_{B}, Q_{C}, and Q_{D} of the first and second stage are at logic one, and Q_{A} of both stages are at logic zero (1110 1110) after the first clock pulse. On the rising edge of the second clock pulse, Q_{A} and RCO of the first stage go high. On the rising edge of the third clock pulse, Q_{A} and RCO of the first stage return to a low level, and Q_{A} of the second stage goes to a high level. At this time, the glitch on RCO of the second stage appears because of the race condition inside the chip.

Figure 3
The glitch causes a problem in the next stage (stage three) if the glitch is still present when the next rising clock edge appears (clock pulse 4). To ensure that this does not happen, the clock frequency must be less than the inverse of the sum of the clock-to-RCO propagation delay and the glitch duration $\left(\mathrm{t}_{\mathrm{g}}\right)$. In other words, $\mathrm{f}_{\max }=1 /\left(\mathrm{t}_{\mathrm{pd}}\right.$ CLK-to-RCO $\left.+\mathrm{t}_{\mathrm{g}}\right)$. For example, at $25^{\circ} \mathrm{C}$ at $4.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$, the clock-to-RCO propagation delay is 43 ns and the maximum duration of the glitch is 12 ns . Therefore, the maximum clock frequency that the cascaded counters can use is 18 MHz . The following tables contain the $f_{c l o c k}, t_{w}$, and $f_{\text {max }}$ specifications for applications that use more than two 'HC161 devices cascaded together.
timing requirements over recommended operating free-air temperature range (unless otherwise noted)

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Note 3)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC161		SN74HC161		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
${ }^{f}$ max			2 V	3.6		2.5		2.9		MHz
			4.5 V	18		12		14		
			6 V	21		14		17		

NOTE 3: These limits apply only to applications that use more than two 'HC161 devices cascaded together.
If the 'HC161 are used as a single unit, or only two cascaded together, then the maximum clock frequency that the device can use is not limited because of the glitch. In these situations, the device can be operated at the maximum specifications.
A glitch can appear on RCO of a single 'HC161 device, depending on the relationship of ENT to CLK. Any application that uses RCO to drive any input except an ENT of another cascaded 'HC161 must take this into consideration.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

