

# **True RMS Inductance** /Capacitance

**SPECIALIST** 





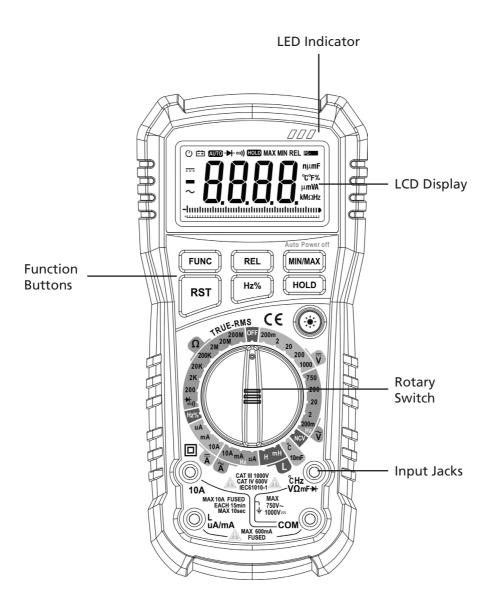
# True RMS Inductance / Capacitance

# **Digital Multimeter User Manual**

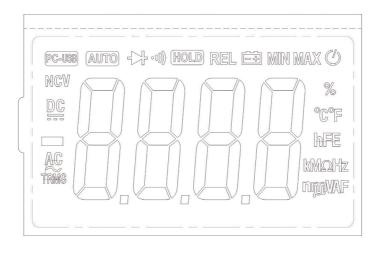
Thank you for purchasing this Digital Multimeter. A powerful true RMS multimeter that includes non-contact voltage testing, and a backlit LCD.

Please familiarise yourself with the functions of the multimeter before use. We recommend retaining this manual for ease of reference.

- Do not use the meter if the meter or test leads look damaged, or if you suspect that the meter is not operating properly.
- Never ground yourself when taking electrical measurements. Do not touch exposed metal pipes, outlets, fixtures, etc., which might be at ground potential.
- Keep your body isolated from ground by using dry clothing, rubber shoes, rubber mats, or any approved insulating material.
- Turn off power to the circuit under test before cutting, de-soldering, or breaking the circuit. Small amounts of current can be dangerous.
- Use caution when working above 60V DC or 30V AC rms, such voltages pose a shock hazard.
- When using the probes, keep your fingers behind the finger guards on the probes.
- Measuring voltage which exceeds the limits of the multimeter may damage the meter and expose the operator to a shock hazard. Always recognize the meter voltage limits as stated on the front of the meter.
- Never apply voltage or current to the meter that exceeds the specified maximum.


| FUNCTIONS                              |                |
|----------------------------------------|----------------|
| Max. Display                           | 2000 Counts    |
| Basic Accuracy                         | 0.5%           |
| DC Voltage Range                       | 200mV-1000V    |
| AC Voltage Range                       | 200mV-750V     |
| DC Current Range                       | 200µA-10A      |
| AC Current Range                       | 200µA-10A      |
| Resistance(Ω)                          | 200Ω>200ΜΩ     |
| Capacitance (CAP)                      | 10nF-100mF     |
| Frequency (Hz)                         | 10Hz-10MHz     |
| Inductance                             | 2mH-20H        |
| Temperature                            | -20°C - 1000°C |
| Data Hold                              | Yes            |
| Diode Test                             | Yes            |
| Duty Cycle                             | Yes            |
| Continuity Check                       | Yes            |
| NCV (Non-Contact Voltage<br>Detection) | Yes            |
| Line Test                              | Yes            |
| Max/Min                                | Yes            |
| Hz/%                                   | Yes            |
| Range                                  | Manual         |
| LCD Backlight                          | Yes            |
| Auto Power Off                         | Yes            |
| Auto Power Off Disable                 | Yes            |

### **SAFETY**


This symbol ! indicates that the operator must refer to an explanation in the Operating Instructions to avoid personal injury or damage to the meter.

#### **CAUTIONS**

- Improper use of this meter can cause damage, shock, injury or death. Read and understand this user manual before operating the meter.
- Always remove the test leads before replacing the battery o fuses.
- Inspect the condition of the test leads and the meter itself for any damage before operating the meter.
- Do not measure voltage if the voltage on the terminals exceeds 1000V above earth ground.
- Use great care when making measurements if the voltages are greater 30VAC RMS or 60VDC, these voltages are considered a shock hazard.
- Always discharge capacitors and remove power from the device to be tested before performing Diode, Resistance or Continuity tests.
- To avoid damages to the meter, do not exceed the maximum limits of the input values shown in the specifications.
- If the multimeter is going to be unused for an extended period of time, remove the batteries to prevent them from draining.



| <b>FUNCTIONS</b>    |                                                                                                                                                                                                                                                                                                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LCD Screen          | Readings and measurements taken by the multimeter will display in this area.                                                                                                                                                                                                                                        |
| Function<br>Buttons | HOLD: Press this button to lock the readings in the LCD, press again to exit the hold mode.  Press "**" to switch the back light mode, around 15 second exit from back light mode.                                                                                                                                  |
| Rotary Switch       | Moving the rotary switch to each individual range of measurement or to the range needing to be measured will also power on the unit.                                                                                                                                                                                |
| Input Jacks         | $V/\Omega$ : The positive input terminal for voltage, resistance, diode, temperature, frequency, capacitance, etc. COM: the negative input terminal for voltage, diode, temperature, etc. $mA$ : the input terminal for lower 200mA current A: 10A input terminal.                                                  |
| Functions           | FUNC: Activates secondary functions where available - primarily for use with diode or continuity testing REL: Stores reading and resets display to zero. Sets a relative reference point to measure against the next reading.  MIN/MAX: Stores input values; beeps when a value is breached and a new value is set. |



| SYMBOL          | DESCRIPTION                |
|-----------------|----------------------------|
|                 | DESCRIPTION  Detailed      |
| HOLD            | Data Hold                  |
| <b>→</b>        | Diode Test                 |
| mV              | Unit of Voltage            |
| V               |                            |
| Hz              | Unit of Frequency          |
| KHz             |                            |
| MHz             |                            |
| Ω<br><b>K</b> Ω | Unit of Resistance         |
| MΩ              |                            |
| hFE             | Transistor                 |
| TRMS            | True RMS Measurement       |
|                 |                            |
| %               | Duty Cycle Measurement     |
| = +             | Low Voltage Indication     |
| ·))             | Continuity Check           |
| uA              | Unit of Current            |
| mA              |                            |
| Α               |                            |
| pF              | Unit of Capacitance        |
| nF              |                            |
| uF<br>mF        |                            |
| uH              | Unit of Inductance         |
| mH              | offic of inductance        |
| H               |                            |
| °C              | Centigrade Temperature     |
| °F              | Fahrenheit Temperature     |
| REL             | Relative Value Measurement |

#### **GENERAL SPECIFCATIONS**

Max. Input Voltage: AC750VRMS, DC1000V Sampling Rate: Approx. 2 times/sec Operating Temperature: 0°C-40°C (32°F~104°F)

Operating Humidity: <80%RH

Storage Temperature: -10°C-60°C (14°F~122°F)

Storage Humidity: <70%RH

Power Supply: 9V Battery (6F22) x 1pc

Dimension: 200 x 92 x 60mm (L x W x H) Weight: Approx. 230g (include battery)

#### **BOX CONTENTS**

1 x Digital Multimeter 1 x Temperature Probe

1 x User Manual

# **MEASUREMENT SPECIFICATIONS**

Accuracy: ±(%readings + digit),

Environment temperature: 18°C~28°C; humidity: ≤80%

# **DC VOLTAGE**

| RANGE | RESOLUTION | ACCURACY                   |
|-------|------------|----------------------------|
| 200mV | 0.1mV      | ±(0.5% reading + 3 digits) |
| 2V    | 0.001V     |                            |
| 20V   | 0.01V      | ±(0.8% reading + 3 digits) |
| 200V  | 0.1V       |                            |
| 1000V | 1V         | ±(1.0% reading + 5 digits) |

Input Impedence:  $10M\Omega$  Max. Input Voltage: 1000VDC

# **AC VOLTAGE**

| RANGE | RESOLUTION | ACCURACY                     |
|-------|------------|------------------------------|
| 200mV | 0.1mV      |                              |
| 2V    | 0.001V     | . (1 00/ roading . E digita) |
| 20V   | 0.01V      | ±(1.0% reading + 5 digits)   |
| 200V  | 0.1V       |                              |
| 750V  | 1V         | ±(1.2% reading + 5 digits)   |

Input Impedence:  $10M\Omega$ 

Max. Input Voltage: 750V ACRMS Frequency Range: 40-1000Hz

# **DC CURRENT**

| RANGE | RESOLUTION | ACCURACY                    |
|-------|------------|-----------------------------|
| 200μΑ | 0.1μΑ      |                             |
| 2mA   | 0.001mA    |                             |
| 20mA  | 0.01mA     | ±(1.0% reading + 5 digits)  |
| 200mA | 0.1mA      |                             |
| 2A    | 0.001A     |                             |
| 10A   | 0.01A      | ±(1.5% reading + 10 digits) |

Overload Protection: Fuse FF200mA/500V for mA range

Fuse FF10A/500V for A range

# **AC CURRENT**

| RANGE | RESOLUTION | ACCURACY                    |
|-------|------------|-----------------------------|
| 200μΑ | 0.1μΑ      | ±(1.2% reading + 5 digits)  |
| 2mA   | 0.001mA    |                             |
| 20mA  | 0.01mA     | ±(1.5% reading + 5 digits)  |
| 200mA | 0.1mA      |                             |
| 2A    | 0.001A     | ±(1.8% reading + 15 digits) |
| 10A   | 0.01mA     | ±(1.6% reading + 15 digits) |

Overload Protection: Fuse FF200mA/500V for mA range

Fuse FF10A/500V for A range

Frequency Range: 40-1000Hz

# **RESISTANCE**

| RANGE | RESOLUTION | ACCURACY                    |
|-------|------------|-----------------------------|
| 200Ω  | 0.1Ω       |                             |
| 2kΩ   | 0.001kΩ    |                             |
| 20kΩ  | 0.01kΩ     | ±(0.8% reading + 5 digits)  |
| 200kΩ | 0.1kΩ      |                             |
| 2ΜΩ   | 0.001MkΩ   |                             |
| 20ΜΩ  | 0.01ΜΩ     | ±(1.0% reading + 10 digits) |
| 200ΜΩ | 0.1MkΩ     | ± {(5.0% +10d) -10d}        |

Overload Protection: 250VDC or 250VAC RMS

# **DIODE & CONTINUITY**

| RANGE    | FUNCTON                                                             |
|----------|---------------------------------------------------------------------|
| <b>→</b> | Display approximate forward voltage of diode.                       |
| ·)))     | Built-in buzzer will sound if resistance is less than $100\Omega$ . |

# **TEMPERATURE**

| RANGE        | RESOLUTION | ACCURACY                     |
|--------------|------------|------------------------------|
| -20° ~ 400°  | 100        | 1/2 00/ roading 1.2 digits)  |
| 400° ~ 1000° | 1°C        | ±(2.0% reading + 3 digits)   |
| 0° ~ 752°    | 100        | . /2 00/ roading . 2 digits) |
| 752° ~ 1832° | 1°F        | ±(3.0% reading + 3 digits)   |

Overload Protection: 250VDC or 250VAC RMS

# **FREQUENCY**

| RANGE  | RESOLUTION | ACCURACY                   |
|--------|------------|----------------------------|
| 10Hz   | 0.01Hz     |                            |
| 100Hz  | 0.1Hz      |                            |
| 1kHz   | 0.001kHz   |                            |
| 10kHz  | 0.01kHz    | ±(0.1% reading + 2 digits) |
| 100kHz | 0.1kHz     |                            |
| 1MHz   | 0.001MHz   |                            |
| 10MHz  | 0.01MHz    |                            |

Overload Protection: 250VDC or 250VAC RMS

#### **CAPACITANCE**

| RANGE | RESOLUTION | ACCURACY                    |
|-------|------------|-----------------------------|
| 10nF  | 0.001nF    | ±(4.0% reading + 25 digits) |
| 100nF | 0.01nF     |                             |
| 1μF   | 0.001μF    | . (4.00/ manding 25 digital |
| 10μF  | 0.01µF     | ±(4.0% reading + 25 digits) |
| 100μF | 0.1μF      |                             |
| 1mF   | 1μF        |                             |
| 10mF  | 10μF       | ±(5.0% reading + 25 digits) |
| 100mF | 100µF      |                             |

Overload Protection: 250VDC or 250VAC RMS

**NOTE:** It is normal for small capacitance measurements to display a reading once removed from the component being measured. Deduct the reading from the reading shown when measuring the capacitance for an accurate measurement.

#### **INDUCTANCE**

| RANGE | RESOLUTION | ACCURACY                    |
|-------|------------|-----------------------------|
| 2mH   | 0.001mH    | ±(3.0% reading + 15 digits) |
| 20mH  | 0.01mH     |                             |
| 200mH | 0.1mH      | ±(3.5% reading + 15 digits) |
| 2H    | 0.001H     | ±(3.5% reading + 20 digits) |
| 20H   | 0.01H      |                             |

Overload Protection: 360VDC or AC RMS

# OPERATING INSTRUCTIONS AC AND DC VOLTAGE MEASUREMENT

#### **WARNING:**

Risk of electrocution. High-voltage circuits, both AC and DC, are very dangerous and should be measured with great care.

- To avoid electrical shock and/or damage to the instrument, do not attempt to take any voltage measurement that might exceed 1000VDC or 750VAC RMS.
- To avoid electrical shock and/or damage to the instrument, do not apply more than 1000VDC or 750VAC RMS between the common terminal and the earth ground.
- 1. Set the rotary switch to the voltage position.
- 2. Insert the black test lead banana plug into the negative COM jack; insert the red test lead banana plug into the positive  $V/\Omega$  jack.
- 3. Touch the black test probe tip to the negative side of the circuit; touch the red test probe tip to the positive side of circuit.
- 4. Read the voltage in the LCD display. The polarity of the red test lead connection will be indicated when making DC Voltage measurement eg. a reverse polarity reading will show as negative on the display.

**NOTE:** Unstable display may occur, especially at the low voltage range measurement, even no test leads inset at input terminals, if an erroneous reading is suspected, short the **V** jack and **COM** jack and make sure the zero displayed at LCD.

#### **CURRENT MEASUREMENT**

#### WARNING:

- To avoid damage to the meter, check the internal fuse before measuring current.
- Use the proper terminals, function and range for any current measurement
- Never attempt an open circuit potential to earth that is greater than 250V.
- Do not place the test leads in parallel with a circuit or component when the test leads are plugged into the current terminals.
- 1. Remove the power from the circuit you are testing and discharge the capacitors of the circuit prior to setting the rotary switch to measure current.
- 2. Insert black test lead banana plug into the negative COM jack. For current measurement less than 200mA, insert the red test lead banana plug into the mA jack. For current measurement between 200mA to 10A insert the red test lead banana plug into 10A jack.
- 3. Place the red test lead on the anode of the diode and the black test lead on the cathode of diode. The meter will show the approximate forward voltage of diode while reverse voltage will indicate **OL**.
- 4. Touch the test probe tips to the circuit or wire you wish to check, and the maximum value of resistance will be shown in the display. If the resistance is less than  $100\Omega$ , the audible signal will sound.

# NOTE:

- In a circuit, a good diode should produce a forward bias reading of voltage, however, the reverse-bias reading can be variable based on resistance of other pathways between the probe tips.
- To avoid electric shock, never measure continuity on circuits of wires with voltage.

# **RESISTANCE MEASUREMENT**

#### WARNING:

To avoid electric shock, disconnect power to the unit under test and discharge all capacitors before taking any resistance measurements. Remove the batteries and unplug the line cords.

- 1. Set the rotary switch to the desired resistance range.
- 2. Insert the black test lead banana plug into the negative **COM** jack, insert the red test lead banana plug into the positive **V** jack.
- 3. Touch the test probe tips across the circuit or part under test. It is best to disconnect one side of the part under test so the rest of the circuit will not interfere with the resistance reading.
- 4. Read the resistance in the LCD display.

#### NOTE:

- The measured value of a resistor in a circuit usually is different from the rated value of resistor, it is because the test current of the meter flows through all possible paths between the probe tips.
- In order to ensure the best accuracy in measurement of low resistance, short the test leads before the measurement and subtract this resistance value of the test leads.
- For high resistance measurement, the meter may take a few seconds to stabilize.
- In the open circuit, the meter display **OL** to indicate the over range.

# **CAPACITANCE MEASUREMENT**

#### WARNING:

To avoid electric shock, disconnect power to the unit under test and discharge all capacitors before taking any capacitance measurements.

- 1. Set the rotary switch to desired capacitance range.
- 2. Insert the black test lead banana plug into the negative **COM** jack, insert the red test lead banana plug into the positive **mA CX** jack.
- 3. Touch the test leads to the capacitor to be tested and read the capacitance value in the display.

#### NOTE:

- The test may take more time for large capacitors to charge, wait until the readings settle before removing the leads.
- To improve the accuracy of measurement less than 10nF, subtract the residual capacitance of the meter and test leads.

# **TEMPERATURE MEASUREMENT**

#### WARNING:

To avoid electrical shock, do not perform temperature measurement when the input voltage exceeds 36VDC or 36VAC RMS.

- 1. Set the rotary switch to °C / °F position, LCD displays values of environmental temperature.
- 2. Insert the temperature probe into the input jack, insert red plug of thermo probe into V °C/°F jack, black plug of thermo probe into COM jack, making sure to observe the correct polarity.
- 3. Place the temperature probe head onto the part you wish to measure, keeping the probe touching the surface until the reading stabilises.
- 4. Read the temperature in the LCD display.

# FREQUENCY MEASUREMENT

#### **WARNING:**

To avoid electric shock, do not apply more than 250VDC or 250VAC RMS before taking frequency measurement.

- 1. Set the rotary switch to desired frequency range.
- 2. Insert the black text lead banana plug into the negative COM jack and the red test lead banana plug into the positive Hz jack.
- 3. Touch the test lead tips to the circuit under test.
- 4. Read the frequency value in the LCD display.

# **INDUCTANCE MEASUREMENT**

- 1. Set the rotary switch to desired inductance range.
- 2. Insert the black test lead banana plug into the negative COM jack and the red test lead banana plug into the positive ma LX jack.
- 3. Touch the test lead tips to the circuit under test.
- 4. Read the inductance value in the LCD display.

# **DISPLAY BACKLIGHT**

Press the \* button for 1 or 2 seconds to turn on or off the display backlight function, the backlight will automatically turn off after 10 seconds.

# **HOLD FUNCTION**

The hold function freezes the reading in the display, press the **HOLD** button momentarily to activate or to exit the hold function.

#### **AUTO POWER OFF**

The auto off feature will turn the meter off after 15 minutes.

# **LOW BATTERY INDICATION**

The icon will appear in the LCD display when the battery voltage becomes low, replace the battery when this icon appears.

#### **MAINTENANCE**

#### WARNING:

- To avoid the electric shock, disconnect the test leads from any source of voltage before removing the back cover or the battery or fuse covers.
- To avoid electric shock, do not operate the meter until the battery and fuse covers are in place and fastened securely.

# **BATTERY INSTALLATION**

To avoid the false readings, replace the battery as soon as the battery indicator  $\frac{1}{1}$  appears.

- 1. Turn power off and disconnect the test leads from the meter.
- 2. Open the rear battery cover by using screwdriver.
- 3. Insert the battery into battery holder, observing the correct polarity.
- 4. Put the battery cover back in place, secure with the screws.

#### REPLACING THE FUSES

- 1. Turn power off and disconnect the test leads from the meter.
- 2. Remove the battery cover and the battery.
- 3. Remove the screws securing the rear cover.
- 4. Gently remove the old fuse and install the new fuse into fuse holder.
- 5. Replace and secure the rear cover, battery and battery cover.

# **NCV (NON-CONTACT VOLTAGE) DETECTION**

Due to external interference sources, this test may detect the wrong voltage. Please use as an estimate only. Detection may be interfered by socket design, insulation thickness and other variable conditions. External sources such as flashlights, motors, etc may interfere with reading and cause the wrong detection.

- 1) Set the rotary switch to NCV position and wait for EF to display on screen.
- 2) Contact the top part of meter with the circuit being tested.
- 3) The LED light will flash and an audible signal will sound, with the signal strength displayed on screen.

Distributed by: Electus Distribution Pty Ltd 46 Eastern Creek Dr, Eastern Creek NSW 2766 Australia Ph 1300 738 555 www.electusdistribution.com.au