PTFE Dry Film Lubricant 175g Zeus Chemical Products

Chemwatch: 4668-78

Version No: 5.1
Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: 01/11/2019 Print Date: 12/07/2022 L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	PTFE Dry Film Lubricant 175g	
Chemical Name	Not Applicable	
Synonyms	PTFE Dry Lube Spray 175g Aerosol	
Proper shipping name	AEROSOLS	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

	Dry film lubricant.
Relevant identified uses	Use according to manufacturer's directions.
	Application is by spray atomisation from a hand held aerosol pack

Details of the supplier of the safety data sheet

Registered company name	Zeus Chemical Products
Address	3 Anderson Place South Windsor NSW 2756 Australia
Telephone	+61 2 4577 4866
Fax	+61 2 4577 6919
Website	www.ultracolor.com.au
Email	admin@ultracolor.com.au

Emergency telephone number

Association / Organisation	Zeus Chemical Products	CHEMWATCH EMERGENCY RESPONSE
Emergency telephone numbers	+61 2 4577 4866 (Mon-Fri, 8am-5pm)	+61 1800 951 288
Other emergency telephone numbers	Not Available	+61 3 9573 3188

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable
Classification [1]	Aerosols Category 1, Aspiration Hazard Category 1, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word Dang

Hazard statement(s)

(0)		
H222+H229	Extremely flammable aerosol. Pressurized container: may burst if heated.	
H304	May be fatal if swallowed and enters airways.	
H336	May cause drowsiness or dizziness.	
AUH044	Risk of explosion if heated under confinement.	

Chemwatch: 4668-78 Page 2 of 15

Version No: 5.1

PTFE Dry Film Lubricant 175g

Issue Date: **01/11/2019**Print Date: **12/07/2022**

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P211	Do not spray on an open flame or other ignition source.
P251	Do not pierce or burn, even after use.
P271	Use only outdoors or in a well-ventilated area.
P261	Avoid breathing mist/vapours/spray.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.	
P331	Do NOT induce vomiting.	
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
73513-42-5	30-60	isohexanes
67-63-0	1-9	isopropanol
9002-84-0	1-9	polytetrafluoroethylene
68476-85-7.	30-60	hydrocarbon propellant
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.
Inhalation	If aerosols, fumes or combustion products are inhaled:
Ingestion	 Avoid giving milk or oils. Avoid giving alcohol. Not considered a normal route of entry. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to petroleum distillates or related hydrocarbons:

- ▶ Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.

Chemwatch: 4668-78 Page 3 of 15 Version No: 5.1

PTFE Dry Film Lubricant 175g

Issue Date: 01/11/2019 Print Date: 12/07/2022

Figure (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology] Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

SMALL FIRE:

Water spray, dry chemical or CO2

LARGE FIRE:

Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Fighting

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Figure and the Equipment should be thoroughly decontaminated after use.

Liquid and vapour are highly flammable.

- Severe fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- Severe explosion hazard, in the form of vapour, when exposed to flame or spark.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition with violent container rupture.
- Aerosol cans may explode on exposure to naked flames.
- Rupturing containers may rocket and scatter burning materials.
- Hazards may not be restricted to pressure effects.
- May emit acrid, poisonous or corrosive fumes.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include:

carbon monoxide (CO)

carbon dioxide (CO2) hydrogen fluoride

other pyrolysis products typical of burning organic material

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

May emit clouds of acrid smoke

HAZCHEM

Not Applicable

SECTION 6 Accidental release measures

Fire/Explosion Hazard

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

r Clean up all sp	ilis immediatei
 A	

- **Minor Spills**
- Avoid breathing vapours and contact with skin and eyes.
- Wear protective clothing, impervious gloves and safety glasses.
- ▶ Shut off all possible sources of ignition and increase ventilation.
- ► Wipe up.
- If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.

▶ DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses
- No smoking, naked lights or ignition sources.

Major Spills

- Increase ventilation. Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- Absorb or cover spill with sand, earth, inert materials or vermiculite.
- If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.
- Collect residues and seal in labelled drums for disposal
- Remove leaking cylinders to a safe place if possible.
- Release pressure under safe, controlled conditions by opening the valve.

Chemwatch: 4668-78 Page 4 of 15

PTFE Dry Film Lubricant 175g

Issue Date: 01/11/2019 Version No: 5.1 Print Date: 12/07/2022

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

- ▶ Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- DO NOT incinerate or puncture aerosol cans
- DO NOT spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

Safe handling

- Store below 38 deg. C.
- Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can
- Store in original containers in approved flammable liquid storage area.
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Keep containers securely sealed. Contents under pressure.
- Store away from incompatible materials.
- Store in a cool, dry, well ventilated area.
- Avoid storage at temperatures higher than 40 deg C.
- Store in an upright position.
- Protect containers against physical damage.
- Check regularly for spills and leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

Storage incompatibility

- Aerosol dispenser.
- Check that containers are clearly labelled.

Isopropanol (syn: isopropyl alcohol, IPA):

- forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones especially methyl ethyl ketone (MEK, 2-butanone) will accelerate the rate of peroxidation
- reacts violently with strong oxidisers, powdered aluminium (exothermic), crotonaldehyde, diethyl aluminium bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ ambient temperature), chromium trioxide (ignition), potassium-tert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminium triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/ incandescence), triisobutyl aluminium
- reacts with phosphorus trichloride forming hydrogen chloride gas
- reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines, aluminium isopropoxide, isocyanates, acetaldehyde, barium perchlorate (forms highly explosive perchloric ester compound), benzoyl peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion), hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminium hydride, lithium tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium, trinitromethane
- attacks some plastics, rubber and coatings
- reacts with metallic aluminium at high temperature
- may generate electrostatic charges

For saturated perfluorocarbons:

- Standard oxidation-reduction potentials do not apply to PFCs. The materials are unaffected by electrochemical reactions and do not dissociate in aqueous media.
- They are essentially already fully oxidised and are unaffected by standard oxidizing agents such as permanganates, chromates, etc. The only known oxidation takes place only at high temperatures by thermal decomposition.
- Likewise, the materials are only reduced under extreme conditions, requiring reducing agents such as elemental sodium
- Avoid magnesium, aluminium and their alloys, brass and steel.
- ▶ The most potentially reactive of this class, the perfluorinated tertiary amines and the quite analogous perfluorinated ethers, are similarly unreactive. Fluorinated tert-amines do not form salts or complexes with strong acids and are not attacked by most oxidizing or reducing agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	isohexanes	Hexane, other isomers	500 ppm / 1760 mg/m3	3500 mg/m3 / 1000 ppm	Not Available	Not Available
Australia Exposure Standards	isopropanol	Isopropyl alcohol	400 ppm / 983 mg/m3	1230 mg/m3 / 500 ppm	Not Available	Not Available
Australia Exposure Standards	hydrocarbon propellant	LPG (liquified petroleum gas)	1000 ppm / 1800 mg/m3	Not Available	Not Available	Not Available

Chemwatch: 4668-78 Page 5 of 15

Version No: 5.1

PTFE Dry Film Lubricant 175g

Issue Date: **01/11/2019**Print Date: **12/07/2022**

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
isopropanol	400 ppm	2000* ppm	12000** ppm
polytetrafluoroethylene	12 mg/m3	130 mg/m3	790 mg/m3
hydrocarbon propellant	65,000 ppm	2.30E+05 ppm	4.00E+05 ppm

Ingredient	Original IDLH	Revised IDLH
isohexanes	Not Available	Not Available
isopropanol	2,000 ppm	Not Available
polytetrafluoroethylene	Not Available	Not Available
hydrocarbon propellant	2,000 ppm	Not Available

MATERIAL DATA

All perfluorinated carbons (PFCs) that have undergone evaluation by the ACGIH or WEEL committees in the US have been granted an exposure guideline of 1000 ppm 8-hour Time Weighted Average (8-hr TWA). NASA has evaluated the toxicity information associated with PFCs including those that can be used as heat transfer agents and fire extinguishing agents in spacecraft and has established a Space Maximum Allowable Concentration (SMAC) of 11,000 ppm for up to 180 days (24 hours/day). for: hexane, isomers (excluding n-hexane)

The TLV-TWA is thought to be protective against nausea, headache, upper respiratory tract irritation and CNS depression. The STEL is added to prevent objective depression of the CNS. The lower value ascribed

to n-hexane is due to the neurotoxicity of its metabolites, principally 5-hydroxy-2-hexanone and 2,5-hexanedione. It is considered unlikely that other hexanes follow the same metabolic route. It should be noted however that the n-hexane TLV-TWA also applies to commercial hexane having a concentration of greater than 5% n-hexane.

Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition)

Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol

NOTE K: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.1%w/w 1,3-butadiene (EINECS No 203-450-8). - European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Speed:	
aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s	
direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)	

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

r ersonar protection

No special equipment for minor exposure i.e. when handling small quantities.

Eye and face protection

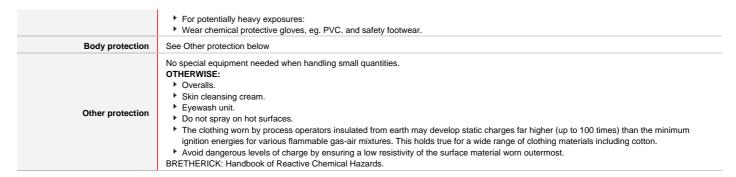
OTHERWISE: For potentially moderate or heavy exposures:

- ► Safety glasses with side shields
- NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them.

Skin protection

See Hand protection below

Hands/feet protection


- OTHERWISE:For potentially moderate exposures:
- Wear general protective gloves, eg. light weight rubber gloves.

No special equipment needed when handling small quantities.

Version No: 5.1

PTFE Dry Film Lubricant 175g

Issue Date: **01/11/2019**Print Date: **12/07/2022**

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the $\it computer-generated$ selection:

PTFE Dry Film Lubricant 175g

Material	СРІ
NEOPRENE	A
NITRILE	Α
NITRILE+PVC	Α
PE/EVAL/PE	А
PVC	В
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	Air-line*	AX-2	AX-PAPR-2 ^
up to 20 x ES	-	AX-3	-
20+ x ES	-	Air-line**	-

^{* -} Continuous-flow; ** - Continuous-flow or positive pressure demand

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

miorination on basis physical			
Appearance	Clear liquid with a solvent odour; does not mix with water. Supplied as an aerosol pack. Contents under PRESSURE. Cont	ains highly flammable hydrocarbon pi	ropellant.
Physical state	Liquid	Relative density (Water = 1)	<1.0
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	-81 propellant	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

Chemwatch: 4668-78 Version No: 5.1 Page **7** of **15**

PTFE Dry Film Lubricant 175g

Issue Date: 01/11/2019 Print Date: 12/07/2022

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability Chemical stability Chemical stability Possibility of hazardous reactions See section 7 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. See section 7	
	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Common, generalised symptoms associated with toxic gas inhalation include:

- recentral nervous system effects such as depression, headache, confusion, dizziness, progressive stupor, coma and seizures;
- respiratory system complications may include acute pulmonary oedema, dyspnoea, stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest;
- cardiovascular effects may include cardiovascular collapse, arrhythmias and cardiac arrest;
- gastrointestinal effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal pain.

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness, Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal

Some aliphatic hydrocarbons produce axonal neuropathies. Isoparaffinic hydrocarbons produce injury to the kidneys of male rats. When albino rats were exposed to isoparaffins at 21.4 mg/l for 4 hours, all animals experienced weakness, tremors, salivation, mild to moderate convulsions, chromodacryorrhoea and ataxia within the first 24 hours. Symptoms disappeared after 24 hours.

Several studies have evaluated sensory irritation in laboratory animals or odor or sensory response in humans. When evaluated by a standard procedure to assess upper airway irritation, isoparaffins did not produce sensory irritation in mice exposed to up to 400 ppm isoparaffin in air. Human volunteers were exposed for six hours to 100 ppm isoparaffin. The subjects were given a self-administered questionnaire to evaluate symptoms, which included dryness of the mucous membranes, loss of appetite, nausea, vomiting, diarrhea, fatigue, headache, dizziness, feeling of inebriation, visual disturbances, tremor, muscular weakness, impairment of coordination or paresthesia. No symptoms associated with solvent exposure were observed. With a human expert panel, odour from liquid imaging copier emissions became weakly discernible at approximately 50 ppm.

Numerous long-term exposures have been conducted in animals with only one major finding observed. Renal tubular damage has been found in kidneys of male rats upon repeated exposures to isoparaffins. It does not occur in mice or in female rats. This male rat nephropathy has been observed with a number of hydrocarbons, including wholly vaporized unleaded gasoline. The phenomenon has been attributed to reversible binding of hydrocarbon to alpha2-globulin. Since humans do not synthesize alpha2-globulin or a similar protein, the finding is not considered to be of biological significance to man. No clinically significant renal abnormalities have been found in refinery workers exposed to hydrocarbons. When evaluated for developmental toxicity in rats, isoparaffins were neither embryotoxic nor teratogenic. Isoparaffins were consistently negative on standard bacterial genotoxicity assays. They were also non-genotoxic in *in vivo* mammalian testing for somatic or germ cell mutations (mouse micronucleus test and rat dominant lethal assay, respectively).

Mullin et al: Jnl Applied Toxicology 10, pp 136-142, 2006

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system

depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.

The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal.

Inhaled

 Chemwatch: 4668-78
 Page 8 of 15
 Issue Date: 01/11/2019

 Version No: 5.1
 Print Date: 12/07/2022

PTFE Dry Film Lubricant 175g

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis: serious consequences may result.

Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

Accidental ingestion of the material may be damaging to the health of the individual.

Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments

Many aliphatic hydrocarbons create a burning sensation because they are irritating to the GI mucosa. Vomiting has been reported in up to one third of all hydrocarbon exposures. While most aliphatic hydrocarbons have little GI absorption, aspiration frequently occurs, either initially or in a semi-delayed fashion as the patient coughs or vomits, thereby resulting in pulmonary effects. Once aspirated, the hydrocarbons can create a severe pneumonitis.

Rats given isoparaffinic hydrocarbons - isoalkanes- (after 18-24 hours fasting) showed lethargy and/or general weakness, ataxia and diarrhoea. Symptoms disappeared within 24-28 hours.

Swallowing 10 millilitres of isopropanol may cause serious injury; 100 millilitres may be fatal if not properly treated. The adult single lethal dose is approximately 250 millilitres. Isopropanol is twice as poisonous as ethanol, and the effects caused are similar, except that isopropanol does not cause an initial feeling of well-being. Swallowing may cause nausea, vomiting and diarrhea; vomiting and stomach inflammation is more prominent with isopropanol than with ethanol. Animals given near-lethal doses also showed inco-ordination, lethargy, inactivity and loss of consciousness.

There is evidence that a slight tolerance to isopropanol may be acquired.

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

The material may produce mild skin irritation; limited evidence or practical experience suggests, that the material either:

- reproduces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin Contact

Ingestion

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (non allergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Dermally, isoparaffins have produced slight to moderate irritation in animals and humans under occluded patch conditions where evaporation cannot freely occur. However, they are not irritating in non-occluded tests, which are a more realistic simulation of human exposure. They have not been found to be sensitisers in guinea pig or human patch testing. However, occasional rare idiosyncratic sensitisation reactions in humans have been reported.

Spray mist may produce discomfort

Open cuts, abraded or irritated skin should not be exposed to this material

The material may accentuate any pre-existing dermatitis condition

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

511ipa

Eve

Limited evidence or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Instillation of isoparaffins into rabbit eyes produces only slight irritation.

Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures..

Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Principal route of occupational exposure to the gas is by inhalation.

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding.

Chronic

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

Animal studies

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Long term, or repeated exposure of isopropanol may cause inco-ordination and tiredness.

Chemwatch: 4668-78 Page 9 of 15 Issue Date: 01/11/2019 Version No: 5.1 Print Date: 12/07/2022

PTFE Dry Film Lubricant 175g

Repeated inhalation exposure to isopropanol may produce sleepiness, inco-ordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in adult animals. Isopropanol does not cause genetic damage

There are inconclusive reports of human sensitisation from skin contacts with isopropanol. Chronic alcoholics are more tolerant of the whole-body effects of isopropanol.

Animal testing showed the chronic exposure did not produce reproductive effects.

NOTE: Commercial isopropanol does not contain "isopropyl oil", which caused an excess incidence of sinus and throat cancers in isoproanol production workers in the past. "Isopropyl oil" is no longer formed during production of isopropanol.

E Day Film Lubricant 175	TOXICITY	IRRITATION
E Dry Film Lubricant 175g	Not Available	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >5000 mg/kg ^[1]	Not Available
	dermal (rat) LD50: >2800-3100 mg/kg ^[1]	
isohexanes	Inhalation(Rat) LC50; >25.2 mg/l4h ^[1]	
	Inhalation(Rat) LC50; 73860 ppm4h ^[1]	
	Oral (Rat) LD50; >25000 mg/kg ^[1]	
	Oral (Rat) LD50; >8000 mg/kg ^[1]	
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: 12800 mg/kg ^[2]	Eye (rabbit): 10 mg - moderate
isopropanol	Inhalation(Mouse) LC50; 53 mg/L4h ^[2]	Eye (rabbit): 100 mg - SEVERE
	Oral (Mouse) LD50; 3600 mg/kg ^[2]	Eye (rabbit): 100mg/24hr-moderate
		Skin (rabbit): 500 mg - mild
	TOXICITY	IRRITATION
polytetrafluoroethylene	Oral (Rat) LD50; 1250 mg/kg ^[2]	Not Available
	TOXICITY	IRRITATION
hydrocarbon propellant	Inhalation(Rat) LC50; 658 mg/l4h ^[2]	Not Available
Legend:	1 Value obtained from Europe ECHA Registered Substan	nces - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless of

PTFE Dry Film Lubricant 175g

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. For isopropanol (IPA):

Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat. Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred.

ISOPROPANOL

Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney.

Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gayage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful.

Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity

Genotoxicity: All genotoxicity assays reported for isopropanol have been negative

Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment

Chemwatch: 4668-78 Page 10 of 15

PTFE Dry Film Lubricant 175g

Issue Date: 01/11/2019 Print Date: 12/07/2022

For perfluorinated carbons (PFCs):

PFCs are inertifuids composed of a complex combination of organic compounds resulting from the distillation of electrochemically fluorinated (ECF) compounds. This class consists of branched, linear and cyclic perfluorinated hydrocarbons having carbon numbers predominantly in the range of C5-Cl8 and boiling in the range of approximately 25 C-255 C (77 F-491 F). Perfluorinated amine and ether compounds may also be

Acute oral and inhalation toxicity tests with perfluoroalkanes show no toxicity at any dose tested, and even extremely high-dose intraperitoneal injection resulted in no lethality. In contrast, perfluoroalkenes (such as octafluorocyclopentene, perfluoroisobutylene, hexafluoropropene) have shown evidence of inhalation toxicity, in some cases, extreme

PFCs are among the least toxic of all known organic chemicals. PFCs don't oxidise or hydrolyse. They have no functional reactive groups. PFCs owe their low toxicity to the combination of the following properties:

- Chemical inertness
- Low solubility in biological media (blood, cell membranes, etc.)
- High volatility
- Resistance to biological activation (reductive and oxidative metabolism)

Because PFCs are chemically inert, if inhaled and absorbed they do not react chemically with any biological molecules; they simply partition between blood and various organs and tissues.

As PFCs have limited ability to dissolve in biological media, they do not reach appreciable concentrations in the tissues of air-exposed animals. As PFCs are highly volatile chemicals and have high air-blood partition coefficients, any fluorochemical remaining after exposure will be rapidly eliminated in the breath. Consequently, all such PFCs have:

- Very high rodent LC50s (very low acute toxicity)
- Very high cardiac sensitisation EC50s (very low toxicity)

POLYTETRAFLUOROETHYLENE

In fact, most PFCs do not induce narcosis (sleep) or cardiac sensitisation at maximum achievable concentration (saturation). Inhalation exposure at levels up to 50,000 ppm for thirteen weeks produced no effects in rats, nor did oral exposure for thirty days at 2,000 mg/kg/day. All PFCs that have undergone evaluation by the ACGIH or WEEL committees in the US have been granted an exposure guideline of 1000 ppm (8-hr TWA). NASA has evaluated the toxicity information associated with PFCs including those that can be used as heat transfer agents and fire extinguishing agents in spacecraft and has established a Space Maximum Allowable Concentration (SMAC) of 11,000 ppm for up to 180 days (24 hours/day)

PFCs are neutral molecules and because they are maximally fluorinated, they cannot undergo biological oxidation-reduction reactions to form reactive aldehydes, acid fluorides, radicals or acids that have been associated with several types of toxicity.

Genetic toxicity: As PFCs are not reactive directly with biological tissue and PFCs cannot form reactive metabolites, these fluorochemicals have tested negative in bacterial mutagenicity assays. Ames testing showed no genotoxicity.

Hydrofluoroethers and hydrofluoropolyethers are highly fluorinated ethers having properties intermediate between the perfluoroethers and hydrocarbon ethers. They are low in toxicity, nonflammable, with densities of 1.4-1.7 g/cm3, surface tensions of 13-16 dyn/cm and low kinematic viscosity. The hydrofluoropolyethers are used as heat-transfer fluids. The hydrofluoroethers are used as heat-transfer fluids as well as precision cleaning solvents and solvents for specialty applications such as coating deposition.

Perfluorinated compounds are potent peroxisome proliferators and were found to induce 8-hydroxydeoxyguanosine in the liver of treated rats. The material may produce peroxisome proliferation. Peroxisomes are single, membrane limited, cytoplasmic organelles that are found in the cells of animals, plants, fungi and protozoa. Peroxisome proliferators include certain hypolipidaemic drugs, phthalate ester plasticisers, industrial solvents, herbicides, food flavours, leukotriene D4 antagonists and hormones. Numerous studies in rats and mice have demonstrated the hepatocarcinogenic effects of peroxisome proliferators, and these compounds have been unequivocally established as carcinogens. However it is generally conceded that compounds inducing proliferation in rats and mice have little, if any, effect on human liver except at very high doses or extreme conditions of exposure.

for Petroleum Hydrocarbon Gases:

In many cases, there is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each mammalian endpoint for each of the petroleum hydrocarbon gases is dependent upon each petroleum hydrocarbon gas constituent endpoint toxicity values (LC50, LOAEL, etc.) and the relative concentration of the constituent present in that gas. It should also be noted that for an individual petroleum hydrocarbon gas, the constituent characterizing toxicity may be different for different mammalian endpoints, again, being dependent upon the concentration of the different constituents in each, distinct petroleum hydrocarbon gas.

All Hydrocarbon Gases Category members contain primarily hydrocarbons (i.e., alkanes and alkenes) and occasionally asphyxiant gases like hydrogen. The inorganic components of the petroleum hydrocarbon gases are less toxic than the C1 - C4 and C5 - C6 hydrocarbon components to both mammalian and aquatic organisms. Unlike other petroleum product categories (e.g. gasoline, diesel fuel, lubricating oils, etc.), the inorganic and hydrocarbon constituents of hydrocarbon gases can be evaluated for hazard individually to then predict the screening level hazard of the Category members

Acute toxicity: No acute toxicity LC50 values have been derived for the C1 -C4 and C5- C6 hydrocarbon (HC) fractions because no mortality was observed at the highest exposure levels tested (~ 5 mg/l) for these petroleum hydrocarbon gas constituents. The order of acute toxicity of petroleum hydrocarbon gas constituents from most to least toxic is:

C5-C6 HCs (LC50 > 1063 ppm) > C1-C4 HCs (LC50 > 10,000 ppm) > benzene (LC50 = 13,700 ppm) > butadiene (LC50 = 129,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen).

Repeat dose toxicity: With the exception of the asphyxiant gases, repeated dose toxicity has been observed in individual selected petroleum hydrocarbon gas constituents. Based upon LOAEL values, the order of order of repeated-dose toxicity of these constituents from most toxic to the least toxic is:

Benzene (LOAEL .>=10 ppm) >C1-C4 HCs (LOAEL = 5,000 ppm; assumed to be 100% 2-butene) > C5-C6 HCs (LOAEL = 6,625 ppm) > butadiene (LOAEL = 8,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen). Genotoxicity:

In vitro: The majority of the Petroleum Hydrocarbon Gases Category components are negative for in vitro genotoxicity. The exceptions are: benzene and 1,3-butadiene, which are genotoxic in bacterial and mammalian in vitro test systems.

In vivo: The majority of the Petroleum Hydrocarbon Gases Category components are negative for in vivo genotoxicity. The exceptions are benzene and 1,3-butadiene, which are genotoxic in in vivo test systems

Developmental toxicity: Developmental effects were induced by two of the petroleum hydrocarbon gas constituents, benzene and the C5 -C6 hydrocarbon fraction. No developmental toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for developmental toxicity. Based on LOAEL and NOAEL values, the order of acute toxicity of these constituents from most to least toxic is:

Benzene (LOAEL = 20 ppm) > butadiene (NOAEL .>=1,000 ppm) > C5-C6 HCs (LOAEL = 3,463 ppm) > C1-C4 HCs (NOAEL >=5,000 ppm; assumed to be 100% 2-butene) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen).

Reproductive toxicity: Reproductive effects were induced by only two petroleum hydrocarbon gas constituents, benzene and isobutane (a constituent of the the C1-C4 hydrocarbon fraction). No reproductive toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for reproductive toxicity. Based on LOAEL and NOAEL values, the order of reproductive toxicity of these constituents from most to least toxic is:

Benzene (LOAEL = 300 ppm) > butadiene (NOAEL .>=6,000 ppm) > C5-C6 HCs (NOAEL .>=6,521 ppm) > C1-C4 HCs (LOAEL = 9,000 ppm; assumed to be 100% isobutane) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen)

Version No: 5.1

HYDROCARBON PROPELLANT

Version No: **5.1**

PTFE Dry Film Lubricant 175g

Issue Date: **01/11/2019**Print Date: **12/07/2022**

	_,		
PTFE Dry Film Lubricant 175g & ISOHEXANES & HYDROCARBON PROPELLANT	No significant acute toxicological data identified in	literature search.	
PTFE Dry Film Lubricant 175g & ISOPROPANOL	1	erythema) and swelling epidermis. His	roduce a contact dermatitis (nonallergic). This form of stologically there may be intercellular oedema of the
ISOPROPANOL & POLYTETRAFLUOROETHYLENE	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to human Evidence of carcinogenicity may be inadequate or		
Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	•

Legend:

🗶 – Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
FFE Dry Film Lubricant 175g	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
isohexanes	Not Available	Not Available	Not Available	Not Available	Not Availabl
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	>1000mg/l	1
	EC50(ECx)	24h	Algae or other aquatic plants	0.011mg/L	4
isopropanol	EC50	48h	Crustacea	7550mg/l	4
	EC50	96h	Algae or other aquatic plants	>1000mg/l	1
	LC50	96h	Fish	4200mg/l	4
	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Availabl
	Endpoint	Test Duration (hr)	Species	Value	Sourc
	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
	EC50	96h	Algae or other aquatic plants	7.71mg/l	2
hydrocarbon propellant	LC50	96h	Fish	24.11mg/l	2
hydrocarbon propellant		96h	Algae or other aquatic plants	7.71mg/l	2
hydrocarbon propellant	EC50(ECx)				
hydrocarbon propellant	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

For isopropanol (IPA): log Kow:-0.16-0.28 Half-life (hr) air:33-84

Half-life (hr) H2O surface water : 130 Henry's atm m3 /mol: 8.07E-06 BOD 5: 1.19,60% COD : 1.61-2.30,97%

ThOD: 2.4

BOD 20: >70% * [Akzo Nobel]

Environmental Fate

Based on calculated results from a lever 1 fugacity model, IPA is expected to partition primarily to the aquatic compartment (77.7%) with the remainder to the air (22.3%). IPA has been shown to biodegrade rapidly in aerobic, aqueous biodegradation tests and therefore, would not be expected to persist in aquatic habitats. IPA is also not expected to persist in surface soils due to rapid evaporation to the air. In the air, physical degradation will occur rapidly due to hydroxy radical (OH) attack. Overall, IPA presents a low potential hazard to aquatic or terrestrial biota.

IPA is expected to volatilise slowly from water based on a calculated Henry s Law constant of 7.52 x 10 -6 atm.m 3 /mole. The calculated half-life for the volatilisation from surface water (1 meter depth) is predicted to range from 4 days (from a river) to 31 days (from a lake). Hydrolysis is not considered a significant degradation process for IPA. However, aerobic biodegradation of IPA has been shown to occur rapidly under non-acclimated conditions, based on a result of 49% biodegradation from a 5 day BOD test. Additional biodegradation data developed using standardized test methods show that IPA is readily biodegradable in both freshwater and saltwater media (72 to 78% biodegradation in 20 days). IPA will evaporate quickly from soil due to its high vapor pressure (43 hPa at 20°C), and is not expected to partition to the soil based on a calculated soil adsorption coefficient (log Koc) of 0.03.

PTFE Dry Film Lubricant 175g

Issue Date: **01/11/2019**Print Date: **12/07/2022**

IPA has the potential to leach through the soil due to its low soil adsorption

In the air, isopropanol is subject to oxidation predominantly by hydroxy radical attack. The room temperature rate constants determined by several investigators are in good agreement for the reaction of IPA with hydroxy radicals. The atmospheric half-life is expected to be 10 to 25 hours, based on measured degradation rates ranging from 5.1 to 7.1 x 10 -12 cm3 /molecule-sec, and an OH concentration of 1.5×106 molecule/cm3 , which is a commonly used default value for calculating atmospheric half-lives. Using OH concentrations representative of polluted (3 x 106) and pristine (3 x 105) air, the atmospheric half-life of IPA would range from 9 to 126 hours, respectively. Direct photolysis is not expected to be an important transformation process for the degradation of IPA.

Ecotoxicity:

IPA has been shown to have a low order of acute aquatic toxicity. Results from 24- to 96-hour LC50 studies range from 1,400 to more than 10,000 mg/L for freshwater and saltwater fish and invertebrates. In addition, 16-hour to 8-day toxicity threshold levels (equivalent to 3% inhibition in cell growth) ranging from 104 to 4,930 mg/L have been demonstrated for various microorganisms.

Chronic aquatic toxicity has also been shown to be of low concern, based on 16- to 21-day NOEC values of 141 to 30 mg/L, respectively, for a freshwater invertebrate. Bioconcentration of IPA in aquatic organisms is not expected to occur based on a measured log octanol/water partition coefficient (log Kow) of 0.05, a calculated bioconcentration factor of 1 for a freshwater fish, and the unlikelihood of constant, long-term exposures.

Toxicity to Plants

Toxicity of IPA to plants is expected to be low, based on a 7-day toxicity threshold value of 1,800 mg/L for a freshwater algae, and an EC50 value of 2,100 mg/L from a lettuce seed germination test.

For n-hexane: log Kow: 3.17-3.94 BOD 5 if unstated: 2.21 COD: 0.04 ThOD: 3.52

Environmental fate:

Transport and Partitioning: The physical properties of *n*-hexane that affect its transport and partitioning in the environment are: water solubility of 9.5 mg/L; log[Kow] (octanol/water partition coefficient), estimated as 3.29; Henry s law constant, 1.69 atm-m3 mol; vapor pressure, 150 mm Hg at 25 C; and log[Koc] in the range of 2.90 to 3.61. As with many alkanes, experimental methods for the estimation of the Koc parameter are lacking, so that estimates must be made based on theoretical considerations.

The dominant transport process from water is volatilization. Based on mathematical models the half-life for *n*-hexane in bodies of water with any degree of turbulent mixing (e.g., rivers) would be less than 3 hours. For standing bodies of water (e.g. small ponds), a half-life no longer than one week (6.8 days) is estimated Based on the log octanol/water partition coefficient (i.e. log[Koc]) and the estimated log sorption coefficient (i.e. log[Koc]) *n*-hexane is not expected to become concentrated in biota. A calculated bioconcentration factor (BCF) of 453 for a fathead minnow further suggests a low potential for *n*-hexane to bioconcentrate or bioaccumulate in trophic food chains.

In soil, the dominant transport mechanism for *n*-hexane present near the surface probably is volatilisation (based on its Henry s law constant, water solubility, vapor pressure, and Koc). While its estimated Koc values suggest a moderate ability to sorb to soil particles, *n*-hexane has a density (0.6603 g/mL at 20 C) well below that of water and a very low water solubility of 9.5 mg/L. *n*-Hexane would, therefore, be viewed as a light nonaqueous phase liquid (LNAPL), which would suggest a low potential for leaching into the lower soil depths since the *n*-hexane would tend to float on the top of the saturated zone of the water table. *n*-Hexane would generally stay near the soil surface and, if not appreciably sorbed into the soil matrix, would be expected eventually to volatilise to the atmosphere. Exceptions would involve locations with shallow groundwater tables where there were large spills of hexane products. In such cases, the *n*-hexane could spread out to contaminant a large volume of soil materials.

Air: *n*-Hexane does not absorb ultraviolet (UV) light at 290 nm and is thus not expected to undergo direct photolysis reactions. The dominant tropospheric removal mechanism for *n*-hexane is generally regarded to be decomposition by hydroxyl radicals. Calculations assuming typical hydroxyl radical concentrations suggest a half-life of approximately 2.9 days. While *n*-hexane can react with nitrogen oxides to produce ozone precursors under controlled laboratory conditions, the smog-producing potential of *n*-hexane is very low compared to that of other alkanes or chlorinated VOCs. Hydroxyl ion reactions in the upper troposphere, therefore, are probably the primary mechanisms for *n*-hexane degradation in the atmosphere. As with most alkanes. *n*-hexane is resistant to hydrolysis

Water: Although few data are available dealing explicitly with the biodegradation of *n*-hexane in water, neither hydrolysis nor biodegradation in surface waters appears to be rapid compared with volatilization. In surface waters, as in the atmosphere, alkanes such as *n*-hexane would be resistant to hydrolysis. Biodegradation is probably the most significant degradation mechanism in groundwater. The ability of *Pseudomonas mendocina* bacteria to metabolise *n*-hexane in laboratory microcosms simulating groundwater conditions has been documented. Mixed bacterial cultures as well as pure cultures are documented as capable of metabolizing *n*-hexane under aerobic conditions. In general, linear alkanes (such as *n*-hexane) are viewed as the most readily biodegradable fractions in petroleum, particularly when oxygen is present in solution. Once introduced into groundwater, *n*-hexane may be fairly persistent since its degradation by chemical hydrolysis is slow and opportunities for biodegradation may be limited under anoxic conditions or where nutrients such as nitrogen or phosphorus are in limited supply.

Sediment and Soil: The most important biodegradation processes involve the conversion of the *n*-hexane to primary alcohols, aldehydes and, ultimately, into fatty acids. Similar processes are encountered with other light hydrocarbons such as heptane. In general, unless the *n*-hexane is buried at some depth within a soil or sediment, volatilisation is generally assumed to occur at a much more rapid rate than chemical or biochemical degradation processes. Once introduced into deeper sediments, *n*-hexane may be fairly persistent.

Ecotoxicity:

 $Fish\ LC50\ (96\ h):\ Oncorhyncus\ mykiss\ 4.14\ mg/l;\ Pimephales\ promelus\ 2.5\ mg/l\ (flow\ through);\ Lepomis\ macrochirus\ 4.12\ mg/l\ (flow\ through);\ Lepomis\ macrochirus\ 4.14\ mg/l\ (flow\ through);\ Lepomis\ mg/l\ (flow\ through);\ Lepomis\ mg/l\ (flow\ through);\$

Daphnia EC50 (48 h): 3.87 mg/l

DO NOT discharge into sewer or waterways

3

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
isohexanes	LOW	LOW
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)
polytetrafluoroethylene	HIGH	HIGH

Bioaccumulative potential

•			
Ingredient	Bioaccumulation		
isohexanes	LOW (LogKOW = 3.7056)		
isopropanol	LOW (LogKOW = 0.05)		
polytetrafluoroethylene	LOW (LogKOW = 1.2142)		

Mobility in soil

•			
Ingredient	Mobility		
isohexanes	LOW (KOC = 230.3)		
isopropanol	HIGH (KOC = 1.06)		
polytetrafluoroethylene	LOW (KOC = 106.8)		

SECTION 13 Disposal considerations

Waste treatment methods

Chemwatch: 4668-78 Page 13 of 15 Version No: 5.1

PTFE Dry Film Lubricant 175g

Issue Date: 01/11/2019 Print Date: 12/07/2022

- $\mbox{\ensuremath{\,^{\blacktriangleright}}}$ It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.

 Where in doubt contact the responsible authority.
- ► Consult State Land Waste Management Authority for disposal.
- ▶ Discharge contents of damaged aerosol cans at an approved site.
- Allow small quantities to evaporate.DO NOT incinerate or puncture aerosol cans.
- ▶ Bury residues and emptied aerosol cans at an approved site.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM

Not Applicable

Land transport (ADG)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 63 190 277 327 344 381 Limited quantity 1000ml		

Air transport (ICAO-IATA / DGR)

	<u>,</u>			
UN number	1950			
UN proper shipping name	Aerosols, flammable; Ae	Aerosols, flammable; Aerosols, flammable (engine starting fluid)		
Transport hazard class(es)	ICAO/IATA Class 2.1 ICAO / IATA Subrisk Not Applicable ERG Code 10L			
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
Special precautions for user	Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack		A145 A167 A802; A1 A145 A167 A802 203 150 kg 203; Forbidden 75 kg; Forbidden Y203; Forbidden 30 kg G; Forbidden	

Sea transport (IMDG-Code / GGVSee)

UN number	1950			
UN proper shipping name	AEROSOLS	AEROSOLS		
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk Not Applicable			
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
Special precautions for user	EMS Number Special provisions Limited Quantities			

PTFE Dry Film Lubricant 175g

Issue Date: 01/11/2019 Print Date: 12/07/2022

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
isohexanes	Not Available
isopropanol	Not Available
polytetrafluoroethylene	Not Available
hydrocarbon propellant	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
isohexanes	Not Available
isopropanol	Not Available
polytetrafluoroethylene	Not Available
hydrocarbon propellant	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

isohexanes is found on the following regulatory lists

Not Applicable

isopropanol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

polytetrafluoroethylene is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

hydrocarbon propellant is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	No (isohexanes)		
Canada - DSL	No (isohexanes)		
Canada - NDSL	No (isohexanes; isopropanol; polytetrafluoroethylene; hydrocarbon propellant)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	No (polytetrafluoroethylene)		
Japan - ENCS	Yes		
Korea - KECI	No (isohexanes)		
New Zealand - NZIoC	Yes		
Philippines - PICCS	Yes		
USA - TSCA	No (isohexanes)		
Taiwan - TCSI	Yes		
Mexico - INSQ	No (isohexanes)		
Vietnam - NCI	Yes		
Russia - FBEPH	No (isohexanes)		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.		

SECTION 16 Other information

Revision Date	01/11/2019
Initial Date	18/05/2006

SDS Version Summary

Version	Date of Update	Sections Updated
4.1	27/06/2017	Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Advice to Doctor, Chronic Health, Classification, Disposal, Engineering Control, Environmental, Exposure Standard, Fire Fighter (extinguishing media), Fire Fighter (fire/explosion hazard), Fire Fighter (fire incompatibility), First Aid (eye), First Aid (inhaled), First Aid (swallowed), Personal Protection (other), Personal Protection (Respirator), Personal Protection (eye), Personal Protection (hands/feet), Physical Properties, Spills (major), Storage (storage incompatibility), Storage (storage requirement), Toxicity and Irritation (Other), Use
5.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification

Chemwatch: 4668-78 Page **15** of **15** Issue Date: 01/11/2019 Version No: 5.1 Print Date: 12/07/2022

PTFE Dry Film Lubricant 175g

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.